ENGR 221 - Dynamics

Spring 2024

Instructor: Mark Holdhusen, Ph.D. (he/him/his) E-mail: mholdhus@uwsp.edu Phone: (715) 212-5364 (text) Zoom: <u>https://wisconsin-edu.zoom.us/j/6053340979</u>

Office Hours

- Wausau (381-D): Tu 12:00-1:00 We 1:00-2:00
- Stevens Point (SCI B109): Th 11:00-12:00
- Marshfield (433): Fr 9:00-10:00

Description:

Kinematics, force-mass-acceleration relations, work and energy, impulse and momentum and moments of inertia of mass. This course will serve the requirements of the several engineering curricula.

Text:

Hibbeler - Engineering Mechanics: Dynamics, ANY EDITION

Website:

https://canvas.uwsp.edu

• This class is a hybrid format so much of the course in online at the above website.

Meeting Times:

- Tuesday Virtual 9:00AM 9:50AM
 - <u>https://wisconsin-edu.zoom.us/j/94675253697?pwd=dk0rZGVvV1ZkcEwrb2NqT3JrT2M0dz09</u>
 Wednesday 11:00AM 11:50AM Wausau Room 284
- <u>https://wisconsin-edu.zoom.us/j/96363888056?pwd=aThnUnh6Q101WjEzL2dURG5lUno1QT09</u>
 Thursday 8:00AM 8:50AM Stevens Point Science Building (SCI) A201
 - <u>https://wisconsin-edu.zoom.us/j/92701701566?pwd=dUd5a01oanFPOEZoN0tlK09WZHI1dz09</u>
 Friday 10:00AM 10:50AM Marshfield Room 207
 - o https://wisconsin-edu.zoom.us/j/95867061242?pwd=RGF1Z3RNMlplbUpjK3MyL3JgWGRtQT09

Grading:

- 5% Introductory problems: After each weekly virtual lecture, problems will be completed before the first weekly discussion section. Late work will not be accepted.
- 10% Discussion problems: During the weekly face-to-face discussions, problems will be solved with help from other students and the instructor. Credit will be given for simply doing these problems. Late submissions will get half credit up to a week past the due date. Submissions more than one week late will be given no credit.
- 10% Homework problems: Assignments are due weekly. Group work is encouraged on homework; however, each student must submit their own assignment. The answers will be given with the assignment. These answers should be used as a guide as to whether you've done the problem correctly. The homework will be graded for completeness only. Late submissions will get half credit up to a week past the due date. Submissions more than one week late will be given no credit.
- 10% Online quizzes: Online quizzes via Canvas corresponding to each homework assignment. Each quiz will consist of a handful of questions from a larger bank of questions. You will be allowed 2 attempts for each quiz and the best score will be recorded. Due date extensions will not be given.
- 35% Exams: 3 equally weighted 2-hour exams as shown on the schedule. These exams will be proctored outside of class. Each exam will consist of a few open-ended problems like those done for homework. One 8.5" x 11" sheet of notes, your textbook, and calculator is allowed. You must use your own note sheet. Partial credit will be given.
- 20% Final Exam: The final exam will consist of 10 multiple choice questions taken from the Fundamentals of Engineering certification exam. Partial credit will be given for getting the correct answer and partial credit will be given for the work done to achieve the answer. One sheet of notes, your textbook, and a calculator will be allowed on the final exam.
- 10% Design Project: Design, build, and mathematically model a system. More details will follow.

Grading Scale

- 93 100% = A
- 90 92% = A-
- 87 89% = B+
- 83 86% = B

Course Schedule:

- 80 82% = B-
- 77 79% = C+
- 73 76% = C
 - 73 78% C
 70 72% = C-

- 67 69% = D+
- 63 66% = D
- 60 62% = D-
- < 59% = F

Date 30	Topic	Assignments	Date	Торіс	Assignments
22-Jan 23-Jan 24-Jan 25-Jan 26-Jan	Rectilinear Kinematics	Intro 1 Discussion 1	25-Mar 26-Mar 27-Mar 28-Mar 29-Mar	Acceleration Analysis	Homework 7 Quiz 7/Intro 8 Discussion 8
29-Jan 30-Jan 31-Jan 1-Feb 2-Feb	Rectangular & Normal/Tangential Coordinates	Homework 1 Quiz 1/Intro 2 Discussion 2	1-Apr 2-Apr 3-Apr 4-Apr 5-Apr	Newton's 2nd Law on Rigid Bodies	Homework 8 Quiz 8/Intro 9 Discussion 9
5-Feb 6-Feb 7-Feb 8-Feb 9-Feb	Cylindrical Coordinates & Relative Motion	Homework 2 Quiz 2/Intro 3 Discussion 3	8-Apr 9-Apr 10-Apr 11-Apr 12-Apr	Work/Energy on Rigid Bodies	Homework 9 Quiz 9/Intro 10 Discussion 10
12-Feb 13-Feb 14-Feb 15-Feb 16-Feb	Newton's 2nd Law	Homework 3 Quiz 3/Intro 4 Discussion 4	15-Apr 16-Apr 17-Apr 18-Apr 19-Apr	Impulse/Momentum on Rigid Bodies	Homework 10 Quiz 10/Intro 11 Discussion 11
19-Feb 20-Feb 21-Feb 22-Feb 23-Feb	Work/Energy	Homework 4 Quiz 4/Intro 5 Discussion 5	22-Apr 23-Apr 24-Apr 25-Apr 26-Apr	Review 2	Homework 11 Quiz 11
26-Feb 27-Feb 28-Feb 29-Feb 1-Mar	Impulse/Momentum	Homework 5 Quiz 5/Intro 6 Discussion 6	29-Apr 30-Apr 1-May 2-May 3-May	Project	Exam 2
4-Mar 5-Mar 6-Mar 7-Mar 8-Mar	Review 1	Homework 6 Quiz 6	6-May 7-May 8-May 9-May 10-May	Final Review	
11-Mar 12-Mar 13-Mar 14-Mar 15-Mar	Fixed axis rotation & velocity analysis	Exam 1 Intro 7 Discussion 7	13-May 14-May 15-May 16-May 17-May	Final Exam	
18-Mar 19-Mar 20-Mar 21-Mar 22-Mar	Spring Break				